Masanori Kameyama : Publication List

[Refereed/査読つき, In Press/印刷中, Submitted/投稿中, Books/著書, Unrefereed/査読なし, Thesis/学位論文, Others/その他雑文]

Refereed Papers / 査読つき論文

なお、国際共著論文の一部については、申請者の海外での通称である「C.」が (非公式ながら) ミドルネームとして付記されている。
N.B.) In some papers under international collaboration, an alias "C." is used as a middlename of Kameyama (although not an official one).

  1. 中久喜 伴益, 亀山 真典, マントル対流系における水の循環とその役割, 高圧力の科学と技術, 33(3), 168-178, 2023. [doi:10.4131/jshpreview.33.168]
  2. Ken'yo U, Masanori Kameyama and Masaki Ogawa, The volcanic and radial expansion/contraction history of the Moon simulated by numerical models of magmatism in the convective mantle, Journal of Geophysical Research Planets, 128, e2023JE007845, 2023. [doi:10.1029/2023JE007845] [reprint in pdf (4040kb)] [supporting information]
  3. Masanori Kameyama, Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity in two-dimensional cylindrical geometry: Implications for mantle convection of super-Earths, Geophysical Journal International, 231, 1457-1469, 2022. [10.1093/gji/ggac259] [reprint in pdf (1724kb)] [supplementary data (17656kb)]
  4. Masanori Kameyama, Linear analysis on the onset of thermal convection of highly compressible fluids with variable viscosity and thermal conductivity in spherical geometry: Implications for the mantle convection of super-Earths, Earth, Planets and Space, 73, 167, 2021. [doi:10.1186/s40623-021-01499-w] [reprint in pdf (5204kb)] [graphical abstract in png (88kb)]
  5. Takehiro Miyagoshi, Masanori Kameyama, and Masaki Ogawa, Tectonic plates in 3D mantle convection model with stress-history-dependent rheology, Earth, Planets and Space, 72:70, 2020. [doi:10.1186/s40623-020-01195-1] [reprint in pdf (4152kb)] [supplementary materials (468kb)] [graphical abstract in png (112kb)]
  6. Mana Tsuchida, and Masanori Kameyama, 2-D numerical simulations on formation and descent of stagnant slabs: important roles of trench retreat and its temporal change, Frontiers in Earth Science, 8:117, 2020. [doi:10.3389/feart.2020.00117] [reprint in pdf (2072kb)]
  7. Takehiro Miyagoshi, Masanori Kameyama, and Masaki Ogawa, Effects of adiabatic compression on thermal convection in super-Earths of various sizes, Earth, Planets and Space, 70, 200, 2018. [doi:10.1186/s40623-018-0975-5] [reprint in pdf (1593kb)]
  8. Masanori Kameyama, and Mayumi Yamamoto, Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths, Physics of the Earth and Planetary Interiors, 274, 23-36, 2018. [doi:10.1016/j.pepi.2017.11.001]
  9. Masanori Kameyama, and Akari Harada, Supercontinent cycle and thermochemical structure in the mantle: Inference from two-dimensional numerical simulations of mantle convection, Geosciences, 7, 126, 2017. [doi:10.3390/geosciences7040126] [reprint in pdf (8713kb)]
  10. Takehiro Miyagoshi, Masanori Kameyama, Masaki Ogawa, Extremely long transition phase of thermal convection in the mantle of massive super-Earths, Earth, Planets and Space, 69, 46, 2017. [doi:10.1186/s40623-017-0630-6] [reprint in pdf (2046kb)]
  11. Takatoshi Yanagisawa, Masanori Kameyama, and Masaki Ogawa, Numerical studies on convective stability and flow pattern in three-dimensional spherical mantle of terrestrial planets, Geophysical Journal International, 206, 1526-1538, 2016. [doi:10.1093/gji/ggw226]
  12. Hiroki Ichikawa, Shinji Yamamoto, Kenji Kawai and Masanori Kameyama, Estimate of subduction rate of island arcs to the deep mantle, Journal of Geophysical Research: Solid Earth, 121, 5447-5460, 2016. [doi:10.1002/2016JB013119]
  13. Masanori Kameyama, Linear analysis on the onset of thermal convection of highly compressible fluids with variable physical properties: Implications for the mantle convection of super-Earths, Geophysical Journal International, 204, 1164-1178, 2016. [doi:10.1093/gji/ggv507]
  14. Takehiro Miyagoshi, Masanori Kameyama, and Masaki Ogawa, Thermal convection and convective regime diagram in super-Earths, Journal of Geophysical Research - Planets, 120, 1267-1278, 2015. [doi:10.1002/2015JE004793] [Supporting Information]
  15. Hiroki Ichikawa, Kenji Kawai, Shinji Yamamoto, and Masanori Kameyama, Effect of water on subduction of continental materials to the deep Earth, In A. Khan, and F. Deschamps, editors, The Earth's heterogeneous mantle: A Geophysical, Geodynamical, and Geochemical Perspective, pages 275-299, Springer, 2015. [doi:10.1007/978-3-319-15627-9_9]
  16. Masanori Kameyama, Takehiro Miyagoshi and Masaki Ogawa, Linear analysis on the onset of thermal convection of highly compressible fluids: Implications for the mantle convection of super-Earths, Geophysical Journal International, 200, 1066-1077, 2015. [doi:10.1093/gji/ggu457]
  17. Hiroki Ichikawa, Masanori Kameyama, Hiroki Senshu, Kenji Kawai, and Shigenori Maruyama, Influence of majorite on hot plumes, Geophysical Research Letters, 41, 7501-7507, 2014. [doi:10.1002/2014GL061477]
  18. Chihiro Tachinami, Masaki Ogawa, and Masanori Kameyama, Thermal convection of compressible fluid in the mantle of super-Earths, Icarus, 231, 377-384, 2014. [doi:10.1016/j.icarus.2013.12.022]
  19. Arata Miyauchi, Masanori Kameyama, and Hiroki Ichikawa, Linear stability analysis on the influences of the spatial variations in thermal conductivity and expansivity on the flow patterns of thermal convection with strongly temperature-dependent viscosity, Journal of Earth Science, 25, 126-139, 2014. [doi:10.1007/s12583-014-0405-y]
  20. Takehiro Miyagoshi, Chihiro Tachinami, Masanori Kameyama, and Masaki Ogawa, On the vigor of mantle convection in super-Earths, Astrophysical Journal, 780:L8, 5 pages, 2014. [doi:10.1088/2041-8205/780/1/L8]
  21. Masanori Kameyama, and Yuya Kinoshita, On the stability of thermal stratification of highly compressible fluids with depth-dependent physical properties: Implications for the mantle convection of super-Earths, Geophysical Journal International, 195, 1443-1454, 2013. [doi:10.1093/gji/ggt321]
  22. Arata Miyauchi, and Masanori Kameyama, Influences of the depth-dependence in thermal conductivity and expansivity on thermal convection with temperature-dependent viscosity, Physics of the Earth and Planetary Interiors, 223, 86-95, 2013. [doi:10.1016/j.pepi.2013.08.001]
  23. Hiroki Ichikawa, Masanori Kameyama, and Kenji Kawai, Mantle convection with continental drift and heat source around the mantle transition zone, Gondwana Research, 24, 1080-1090, 2013. [doi:10.1016/j.gr.2013.02.001]
  24. Hiroki Ichikawa, Kenji Kawai, Shinji Yamamoto, and Masanori Kameyama, Supply rate of continental materials to the deep mantle through subduction channels, Tectonophysics, 592, 46-52, 2013. [doi:10.1016/j.tecto.2013.02.001]
  25. Masanori Kameyama, Hiroki Ichikawa, and Arata Miyauchi, A linear stability analysis on the onset of thermal convection of a fluid with strongly temperature-dependent viscosity in a spherical shell, Theoretical and Computational Fluid Dynamics, 27, 21-40, 2013. [doi:10.1007/s00162-011-0250-x] [reprint in pdf (992kb)]
  26. Masanori Kameyama, and Ryoko Nishioka, Generation of ascending flows in the Big Mantle Wedge (BMW) beneath Northeast Asia induced by retreat and stagnation of subducted slab, Geophysical Research Letters, 39, L10309, 2012. [doi:10.1029/2012GL051678]
  27. Kohtaro Ujiie, Masanori Kameyama, and Asuka Yamaguchi, Geological record of thermal pressurization and earthquake instability of subduction thrusts, Tectonophysics, 485, 260-268, 2010. [doi:10.1016/j.tecto.2010.01.002]
  28. Scott D. King, Changyeol Lee, Peter E. van Keken, Wei Leng, Shijie Zhong, Eh Tan, Nicola Tosi, and Masanori C. Kameyama, A community benchmark for 2D Cartesian compressible convection in the Earth's mantle, Geophys. J. Int., 180, 73-87, 2010. [doi:10.1111/j.1365-246X.2009.04413.x]
  29. Mikito Furuichi, Masanori Kameyama, and Akira Kageyama, Validity test of a Stokes flow solver by fluid rope coiling: toward plate-mantle simulation, Physics of Earth and Planetary Interiors, 176, 44-53, 2009. [doi:10.1016/j.pepi.2009.03.014]
  30. Masanori Kameyama, Akira Kageyama, and Tetsuya Sato, Multigrid-based simulation code for mantle convection in spherical shell using Yin-Yang grid, Physics of Earth and Planetary Interiors, 171, 19-32, 2008. [doi:10.1016/j.pepi.2008.06.025]
  31. James B. S. G. Greensky, Wojciech Walter Czech, David A. Yuen, Michael Richard Knox, Megan Rose Damon, Shi Steve Chen, and Masanori C. Kameyama, Ubiquitous interactive visualization of 3D mantle convection using a web-portal with Java and Ajax framework, Visual Geosciences, 13, 105-115, 2008. [doi:10.1007/s10069-008-0013-z]
  32. Megan Damon, Masanori C. Kameyama, Michael Knox, David H. Porter, David A. Yuen, and Erik O. D. Sevre, Interactive visualization of 3D mantle convection, Visual Geosciences, 13, 49-57, 2008. [doi:10.1007/s10069-007-0008-1]
  33. Mikito Furuichi, Masanori Kameyama, and Akira Kageyama, Three-dimensional Eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation, Journal of Computational Physics, 227, 4977-4997, 2008. [doi:10.1016/j.jcp.2008.01.052]
  34. David A. Yuen, Ctirad Matyska, Ondrej Cadek and Masanori Kameyama, The dynamical influences from physical properties in the lower mantle and post-perovskite phase transition, In K. Hirose, J. Brodholt, T. Lay and D. A. Yuen, editors, Post-Perovskite: The Last Mantle Phase Transition, Geophysical Monograph. pages 249-270, American Geophysical Union, 2007. [doi:10.1029/174GM17]
  35. David A. Yuen, Marc Monnereau, Ulrich Hansen, Masanori Kameyama, and Ctirad Matyska, Dynamics of superplumes in the lower mantle, In D. A. Yuen, S. Maruyama, S. Karato, and B. F. Windley, editors, Superplumes: Beyond Plate Tectonics. pages 239-267, Springer, 2007. [doi:10.1007/978-1-4020-5750-2_9]
  36. Arito Sakaguchi, Akiko Yanagihara, Kohtaro Ujiie, Hidemi Tanaka, and Masanori Kameyama, Thermal maturity of fold-thrust belt based on the vitrinite reflectance analysis in western foothills complex, western Taiwan, Tectonophysics, 443, 220-232, 2007. [doi:10.1016/j.tecto.2007.01.017]
  37. Michio Tagawa, Tomoeki Nakakuki, Masanori Kameyama, and Fumiko Tajima, The role of history-dependent rheology in plate boundary lubrication for generating one-sided subduction, Pure and Applied Geophysics, 164, 879-907, 2007. [doi:10.1007/s00024-007-0197-4]
  38. Masanori Kameyama and David A. Yuen, 3-D convection studies on the thermal state in the lower mantle with post-perovskite phase transition, Geophysical Research Letters, 33, No. 12, L12S10, 2006. [doi:10.1029/2006GL025744]
  39. Masanori Kameyama, ACuTEMan: A multigrid-based mantle convection simulation code and its optimization to the Earth Simulator, Journal of the Earth Simulator, 4, 2-10, 2005. [reprint in pdf (432kb)]
  40. Masanori Kameyama, Akira Kageyama, and Tetsuya Sato, Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity, Journal of Computational Physics, 206, 162-181, 2005. [doi:10.1016/j.jcp.2004.11.030]
  41. Akira Kageyama, Masanori Kameyama, Satoru Fujihara, Masaki Yoshida, Mamoru Hyodo, and Yoshinori Tsuda, A 15.2 TFlops Simulation of Geodynamo on the Earth Simulator, in Proceedings of the 2004 ACM/IEEE conference on Supercomputing, 35 (9 pages), 2004. [doi:10.1109/SC.2004.1] [preprint in pdf (322kb)]
  42. Masanori Kameyama, Comparison between thermal-viscous coupling and frictional sliding, Tectonophysics, 376, 185-197, 2003. [doi:10.1016/j.tecto.2003.09.012]
  43. Masanori Kameyama and Yoshiyuki Kaneda, Thermal-mechanical coupling in shear deformation of viscoelastic material as a model of frictional constitutive relations, Pure and Applied Geophysics, 159, 2011-2028, 2002. [doi:10.1007/s00024-002-8720-0]
  44. Toshitaka Baba, Takane Hori, Satoshi Hirano, Phil R. Cummins, Jin-Oh Park, Masanori Kameyama, and Yoshiyuki Kaneda, Deformation of a seamount subducting beneath an accretionary prism: constraints from numerical simulation, Geophysical Research Letters, 28, 1827-1830, 2001. [doi:10.1029/2000GL012266]
  45. 亀山 真典, 堀 高峰, Phil R. Cummins, 平野 聡, 馬場 俊孝, 金田 義行, 摩擦熱を考慮した剪断変形のシミュレーション, 東京大学地震研究所彙報, 75, 127-143, 2000. [http://hdl.handle.net/2261/13188] [preprint in pdf with color figures (365kb)]
  46. Joy M. Branlund, Masanori C. Kameyama, David A. Yuen, and Yoshiyuki Kaneda, Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: implications for faster ductile faulting and earthquakes in the spinel stability field, Earth Planetary Science Letters, 182, 171-185, 2000. [doi:10.1016/S0012-821X(00)00239-9]
  47. Masanori Kameyama, and Masaki Ogawa, Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box, Earth Planetary Science Letters, 180, 355-367, 2000. [doi:10.1016/S0012-821X(00)00171-0]
  48. Masanori Kameyama, David A. Yuen, and Shun-Ichiro Karato, Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone, Earth and Planetary Science Letters, 168, 159-172, 1999. [doi:10.1016/S0012-821X(99)00040-0]
  49. Masanori Kameyama, David A. Yuen, and Hiromi Fujimoto, The interaction of viscous heating with grain-size dependent rheology in the formation of localized slip zones, Geophysical Research Letters, 24, 2523-2526, 1997. [doi:10.1029/97GL02648]
  50. Masanori Kameyama, Hiromi Fujimoto, and Masaki Ogawa, A thermo-chemical regime in the upper mantle in the early earth inferred from a numerical model of magma-migration in a convecting upper mantle, Physics of the Earth and Planetary Interiors, 94, 187-215, 1996. [doi:10.1016/0031-9201(95)03102-2]

In Press / 印刷中

  1. Takatoshi Yanagisawa, Sota Takano, Daisuke Noto, Masanori Kameyama, and Yuji Tasaka, Quasi-steady transitions in confined convection, Journal of Fluid Mechanics, in press, 2024.

Submitted Manuscript(s) / 投稿中

  1. Masanori Kameyama, Numerical experiments on thermal convection in the mantles of super-Earths with various sizes: Roles of adiabatic compression, submitted to Earth, Planets and Space, 2024. [preprint in pdf (1000kb)] [additional materials in pdf (2228kb)] [graphical abstract in png (84kb)]
  2. Ken'yo Uh, Masanori Kameyama, Gaku Nishiyama, Takehiro Miyagoshi, and Masaki Ogawa, Resurgence of Lunar Volcanism: Role of Localized Radioactive Enrichment in a Numerical Model of Magmatism and Mantle Convection, submitted to Geophysical Research Letters, 2024.

Books / 著書

  1. 亀山 真典, 地球のマントルのダイナミクスとプレートテクトニクス, in 西山 忠男, 吉田 茂生 (編) 新しい地球惑星科学, 応用編7章, 183-192, 培風館, 2019. ISBN 978-4-563-02522-9 C3044
  2. 亀山 真典, マントルダイナミクスに関する数値解析手法, in 鳥海 光弘ほか (編), 図説 固体地球の事典, 第8章第4項, 194-195, 朝倉書店, 2018. ISBN 978-4-254-16072-7 C3544
  3. 亀山 真典, 地球内部のダイナミクス, in 山本 明彦 (編), 地球ダイナミクス, 第10章, 174-195, 2014. ISBN 978-4-254-16067-3 C3044
  4. Masanori Kameyama, Simulation Studies of Solid Earth Dynamics on the Earth Simulator -- Theoretical Backgrounds, Tools and Outcrops --, In S. Maruyama and T. Hashida, editors, The Earth Simulator, volume 8 of The 21st Century COE Program International COE of Flow Dynamics Lecture Series, chapter 3, pages 83-125. Tohoku University Press, 2008. ISBN 978-4-86163-080-4 C3353

Unrefereed Papers / 査読なし論文・記事など

  1. 亀山 真典, マントル対流 --「固体」地球内部の「流れ」-- 日本機械学会誌, 116 (1136), 478-480, 2013.
  2. 亀山 真典, マントル対流の流体力学, 油空圧技術, 51 (13), 17-22, 日本工業出版, 2012.
  3. 亀山 真典, マントル対流 -- 地球深部で「流れる」「固体」 --, 日本流体力学会誌「ながれ」, 30, 305-310, 2011.
  4. 亀山 真典, マントル対流を可視化する, 可視化情報学会誌, 28 (110), 14-19, 2008.

Thesis / 学位論文

Master thesis / 学位論文(修士)
A numerical model of magma-migration in a convecting upper mantle
「火成活動を伴うマントル対流の数値シミュレーション」
東京大学大学院理学系研究科地球惑星物理学専攻 1995年3月修士 (理学)
Doctor thesis / 学位論文(博士)
Conditions for plate tectonics inferred from numerical experiments of mantle convection and shear zone formation
「プレートテクトニクスの発現条件 --マントル対流・シアゾーン形成からの制約--」
東京大学大学院理学系研究科地球惑星物理学専攻 1998年3月博士 (理学)

Others / その他雑文

  1. 応力履歴依存レオロジーを用いた3次元マントル対流シミュレーションによる「プレート」のモデル化, GRC ニュースレター, 第62号, 2022年3月10日. [preprint in pdf (312kb)]
  2. 数値シミュレーションによるスラブの挙動解明, GRC ニュースレター, 第51号, 2018年6月10日. [preprint in pdf (122kb)]
  3. 小さい地球型惑星・衛星のマントル中の熱対流: 3次元球殻形状と粘性の温度依存性の影響, GRC ニュースレター, 第44号, 2016年2月29日. [preprint in pdf (184kb)]
  4. 強い圧縮性と深度依存物性をもつ流体の熱対流: スーパー地球のマントル対流に関する考察, GRC ニュースレター, 第37号, 2013年10月10日. [preprint in pdf (463kb)]
  5. 物性変化を伴うマントル対流シミュレーション: マントル物性の変化が対流様式に与える影響, GRC ニュースレター, 第33号, 2012年5月10日. [preprint in pdf (68kb)]
  6. マントル対流の大規模高速シミュレーションプログラムの開発, GRC ニュースレター, 第22号, 2008年9月10日. [preprint in pdf (141kb)]