Our numerical results were compared with those by Stemmer et al. (2006), for steady-state flow patterns with weakly temperature-dependent viscosity.
Data summarized on July 5, 2007 by Masanori Kameyama.
Tetrahedral patterns |
Cubic patterns |
rη=1 |
rη=20 |
rη=1 |
rη=30 |
3-D distribution of temperature (green for T > 0.4; blue for T < 0.1) |
 |
 |
 |
 |
Distribution of temperature at mid-depth r=(rmax+rmin)/2 (contour interval of 0.1) |

 |

 |

 |

 |
3-D distribution of lateral temperature anomalies (yellow to red for δT > +0.1; blue for δT < -0.1) |
 |
 |
 |
 |
Distribution of lateral temperature anomalies at mid-depth r=(rmax+rmin)/2 (contour interval of 0.05) |

 |

 |

 |

 |
Distribution of radial velocity at mid-depth r=(rmax+rmin)/2 (contour interval of 10; positive upward) |
 |
 |
 |
 |
Plots of lateral average of temperature at given r |
 |
 |
Comparison of global (Nusselt numbers Nu, RMS velocities Vrms and average temperature Tav) and local (maximum/minimum of the interior temperature Ti,max/min and of the interior radial velocity vi,max/min at mid-depth) of tetrahedral steady-state flow patterns with weakly temperature-dependent viscosity and Ra1/2=7000.
rη |
Model |
Nodes |
r×(θ×φ) |
Nu |
Vrms |
Tav |
Ti,max |
Ti,min |
Vi,max |
Vi,min |
1 |
St06 (FV) |
Ext. |
3.4949 |
32.6234 |
0.21560 |
0.89326 |
0.01731 |
115.157 |
-29.616 |
KKS (FV) |
24576 |
16×(2×16×48) |
3.4090 |
31.9466 |
0.22944 |
0.80282 |
0.02644 |
99.8727 |
-31.686 |
196608 |
32×(2×32×96) |
3.4726 |
32.4842 |
0.22054 |
0.86010 |
0.02030 |
109.866 |
-30.560 |
1572864 |
64×(2×64×192) |
3.4898 |
32.6024 |
0.21705 |
0.88409 |
0.01807 |
113.655 |
-29.906 |
12582912 |
128×(2×128×384) |
3.4945 |
32.6308 |
0.21597 |
0.89061 |
0.01754 |
114.700 |
-29.702 |
10 |
St06 (FV) |
Ext. |
3.2475 |
27.2878 |
0.23438 |
0.90423 |
0.02115 |
140.188 |
-16.970 |
KKS (FV) |
24576 |
16×(2×16×48) |
3.2100 |
26.7867 |
0.24733 |
0.82195 |
0.02848 |
117.059 |
-18.450 |
196608 |
32×(2×32×96) |
3.2410 |
27.1853 |
0.23889 |
0.87555 |
0.02331 |
131.975 |
-17.598 |
1572864 |
64×(2×64×192) |
3.2468 |
27.2696 |
0.23566 |
0.89442 |
0.02171 |
137.423 |
-17.204 |
12582912 |
128×(2×128×384) |
3.2482 |
27.2892 |
0.23469 |
0.90137 |
0.02134 |
139.342 |
-17.067 |
20 |
St06 (FV) |
Ext. |
3.1526 |
25.7600 |
0.24155 |
0.90861 |
0.02329 |
148.063 |
-14.876 |
KKS (FV) |
24576 |
16×(2×16×48) |
3.1326 |
25.4115 |
0.25361 |
0.83384 |
0.02947 |
124.441 |
-15.993 |
196608 |
32×(2×32×96) |
3.1514 |
25.6981 |
0.24576 |
0.88155 |
0.02503 |
139.196 |
-15.282 |
1572864 |
64×(2×64×192) |
3.1532 |
25.7495 |
0.24276 |
0.89981 |
0.02375 |
145.085 |
-15.024 |
12582912 |
128×(2×128×384) |
3.1534 |
25.7607 |
0.24185 |
0.90598 |
0.02343 |
147.076 |
-14.936 |
Comparison of global (Nusselt numbers Nu, RMS velocities Vrms and average temperature Tav) and local (maximum/minimum of the interior temperature Ti,max/min and of the interior radial velocity vi,max/min at mid-depth) of cubic steady-state flow patterns with weakly temperature-dependent viscosity and Ra1/2=7000.
rη |
Model |
Nodes |
r×(θ×φ) |
Nu |
Vrms |
Tav |
Ti,max |
Ti,min |
Vi,max |
Vi,min |
1 |
St06 (FV) |
Ext. |
3.6090 |
31.0709 |
0.21583 |
0.85902 |
0.02714 |
109.464 |
-34.330 |
KKS (FV) |
24576 |
16×(2×16×48) |
3.5225 |
30.3245 |
0.23427 |
0.73863 |
0.04006 |
94.0879 |
-37.226 |
196608 |
32×(2×32×96) |
3.5885 |
30.9281 |
0.22274 |
0.81629 |
0.03024 |
104.164 |
-35.804 |
1572864 |
64×(2×64×192) |
3.6044 |
31.0486 |
0.21793 |
0.84559 |
0.02798 |
107.779 |
-34.793 |
12582912 |
128×(2×128×384) |
3.6083 |
31.0741 |
0.21639 |
0.85439 |
0.02745 |
108.867 |
-34.438 |
20 |
St06 (FV) |
Ext. |
3.3530 |
25.0268 |
0.25087 |
0.88352 |
0.03970 |
134.321 |
-17.808 |
KKS (FV) |
24576 |
16×(2×16×48) |
3.3088 |
24.5016 |
0.26620 |
0.76767 |
0.05022 |
103.102 |
-19.335 |
196608 |
32×(2×32×96) |
3.3435 |
24.9239 |
0.25627 |
0.84225 |
0.04210 |
123.401 |
-18.398 |
1572864 |
64×(2×64×192) |
3.3507 |
25.0070 |
0.25239 |
0.87068 |
0.04046 |
130.899 |
-17.970 |
12582912 |
128×(2×128×384) |
3.3525 |
25.0622 |
0.25119 |
0.88027 |
0.03984 |
133.454 |
-17.841 |
30 |
St06 (FV) |
Ext. |
3.2976 |
24.2435 |
0.25704 |
0.88740 |
0.04223 |
137.773 |
-16.234 |
KKS (FV) |
24576 |
16×(2×16×48) |
3.2648 |
23.8120 |
0.27190 |
0.78712 |
0.05303 |
108.540 |
-17.585 |
196608 |
32×(2×32×96) |
3.2915 |
24.1675 |
0.26221 |
0.85126 |
0.04463 |
127.386 |
-16.750 |
1572864 |
64×(2×64×192) |
3.2959 |
24.2300 |
0.25844 |
0.87495 |
0.04293 |
134.180 |
-16.369 |
12582912 |
128×(2×128×384) |
3.2969 |
24.2435 |
0.25728 |
0.88439 |
0.04231 |
136.982 |
-16.255 |
Reference
-
K. Stemmer, H. Harder, and U. Hansen
A new method to simulate convection with strongly temperature- and
pressure-dependent viscosity in a spherical shell: Applications to the
Earth's mantle.
Phys. Earth Planet. Inter., 157(3-4):223-249, 2006.