Validation of mantle convection code of spherical shell geometry

Validation of mantle convection code of spherical shell geometry

Our numerical results were compared with those by Stemmer et al. (2006), for steady-state flow patterns with weakly temperature-dependent viscosity. Data summarized on July 5, 2007 by Masanori Kameyama.
Tetrahedral patterns Cubic patterns
rη=1 rη=20 rη=1 rη=30
3-D distribution of temperature (green for T > 0.4; blue for T < 0.1)
Distribution of temperature at mid-depth r=(rmax+rmin)/2 (contour interval of 0.1)




3-D distribution of lateral temperature anomalies (yellow to red for δT > +0.1; blue for δT < -0.1)
Distribution of lateral temperature anomalies at mid-depth r=(rmax+rmin)/2 (contour interval of 0.05)




Distribution of radial velocity at mid-depth r=(rmax+rmin)/2 (contour interval of 10; positive upward)
Plots of lateral average of temperature at given r


Comparison of global (Nusselt numbers Nu, RMS velocities Vrms and average temperature Tav) and local (maximum/minimum of the interior temperature Ti,max/min and of the interior radial velocity vi,max/min at mid-depth) of tetrahedral steady-state flow patterns with weakly temperature-dependent viscosity and Ra1/2=7000.
rη Model Nodes r×(θ×φ) Nu Vrms Tav Ti,max Ti,min Vi,max Vi,min
1 St06 (FV) Ext. 3.4949 32.6234 0.21560 0.89326 0.01731 115.157 -29.616
KKS (FV) 24576 16×(2×16×48) 3.4090 31.9466 0.22944 0.80282 0.02644 99.8727 -31.686
196608 32×(2×32×96) 3.4726 32.4842 0.22054 0.86010 0.02030 109.866 -30.560
1572864 64×(2×64×192) 3.4898 32.6024 0.21705 0.88409 0.01807 113.655 -29.906
12582912 128×(2×128×384) 3.4945 32.6308 0.21597 0.89061 0.01754 114.700 -29.702
10 St06 (FV) Ext. 3.2475 27.2878 0.23438 0.90423 0.02115 140.188 -16.970
KKS (FV) 24576 16×(2×16×48) 3.2100 26.7867 0.24733 0.82195 0.02848 117.059 -18.450
196608 32×(2×32×96) 3.2410 27.1853 0.23889 0.87555 0.02331 131.975 -17.598
1572864 64×(2×64×192) 3.2468 27.2696 0.23566 0.89442 0.02171 137.423 -17.204
12582912 128×(2×128×384) 3.2482 27.2892 0.23469 0.90137 0.02134 139.342 -17.067
20 St06 (FV) Ext. 3.1526 25.7600 0.24155 0.90861 0.02329 148.063 -14.876
KKS (FV) 24576 16×(2×16×48) 3.1326 25.4115 0.25361 0.83384 0.02947 124.441 -15.993
196608 32×(2×32×96) 3.1514 25.6981 0.24576 0.88155 0.02503 139.196 -15.282
1572864 64×(2×64×192) 3.1532 25.7495 0.24276 0.89981 0.02375 145.085 -15.024
12582912 128×(2×128×384) 3.1534 25.7607 0.24185 0.90598 0.02343 147.076 -14.936

Comparison of global (Nusselt numbers Nu, RMS velocities Vrms and average temperature Tav) and local (maximum/minimum of the interior temperature Ti,max/min and of the interior radial velocity vi,max/min at mid-depth) of cubic steady-state flow patterns with weakly temperature-dependent viscosity and Ra1/2=7000.
rη Model Nodes r×(θ×φ) Nu Vrms Tav Ti,max Ti,min Vi,max Vi,min
1 St06 (FV) Ext. 3.6090 31.0709 0.21583 0.85902 0.02714 109.464 -34.330
KKS (FV) 24576 16×(2×16×48) 3.5225 30.3245 0.23427 0.73863 0.04006 94.0879 -37.226
196608 32×(2×32×96) 3.5885 30.9281 0.22274 0.81629 0.03024 104.164 -35.804
1572864 64×(2×64×192) 3.6044 31.0486 0.21793 0.84559 0.02798 107.779 -34.793
12582912 128×(2×128×384) 3.6083 31.0741 0.21639 0.85439 0.02745 108.867 -34.438
20 St06 (FV) Ext. 3.3530 25.0268 0.25087 0.88352 0.03970 134.321 -17.808
KKS (FV) 24576 16×(2×16×48) 3.3088 24.5016 0.26620 0.76767 0.05022 103.102 -19.335
196608 32×(2×32×96) 3.3435 24.9239 0.25627 0.84225 0.04210 123.401 -18.398
1572864 64×(2×64×192) 3.3507 25.0070 0.25239 0.87068 0.04046 130.899 -17.970
12582912 128×(2×128×384) 3.3525 25.0622 0.25119 0.88027 0.03984 133.454 -17.841
30 St06 (FV) Ext. 3.2976 24.2435 0.25704 0.88740 0.04223 137.773 -16.234
KKS (FV) 24576 16×(2×16×48) 3.2648 23.8120 0.27190 0.78712 0.05303 108.540 -17.585
196608 32×(2×32×96) 3.2915 24.1675 0.26221 0.85126 0.04463 127.386 -16.750
1572864 64×(2×64×192) 3.2959 24.2300 0.25844 0.87495 0.04293 134.180 -16.369
12582912 128×(2×128×384) 3.2969 24.2435 0.25728 0.88439 0.04231 136.982 -16.255

Reference