These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is not doing a link step.
-c
-S
-E
-l
library-l
libraryIt makes a difference where in the command you write this option; the linker searches and processes libraries and object files in the order they are specified. Thus, ‘foo.o -lz bar.o’ searches library ‘z’ after file foo.o but before bar.o. If bar.o refers to functions in ‘z’, those functions may not be loaded.
The linker searches a standard list of directories for the library, which is actually a file named liblibrary.a. The linker then uses this file as if it had been specified precisely by name.
The directories searched include several standard system directories plus any that you specify with -L.
Normally the files found this way are library files—archive files
whose members are object files. The linker handles an archive file by
scanning through it for members which define symbols that have so far
been referenced but not defined. But if the file that is found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an -l option and specifying a file name
is that -l surrounds library with ‘lib’ and ‘.a’
and searches several directories.
-lobjc
-nostartfiles
-nodefaultlibs
-static-libgcc
or -shared-libgcc
, are ignored.
The standard startup files are used normally, unless -nostartfiles
is used.
The compiler may generate calls to memcmp
,
memset
, memcpy
and memmove
.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
-nostdlib
-static-libgcc
or -shared-libgcc
, are ignored.
The compiler may generate calls to memcmp
, memset
,
memcpy
and memmove
.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
One of the standard libraries bypassed by -nostdlib and
-nodefaultlibs is libgcc.a, a library of internal subroutines
which GCC uses to overcome shortcomings of particular machines, or special
needs for some languages.
(See Interfacing to GCC Output,
for more discussion of libgcc.a.)
In most cases, you need libgcc.a even when you want to avoid
other standard libraries. In other words, when you specify -nostdlib
or -nodefaultlibs you should usually specify -lgcc as well.
This ensures that you have no unresolved references to internal GCC
library subroutines.
(An example of such an internal subroutine is ‘__main’, used to ensure C++
constructors are called; see collect2
.)
-pie
-rdynamic
dlopen
or to allow obtaining backtraces
from within a program.
-s
-static
-shared
-shared-libgcc
-static-libgcc
There are several situations in which an application should use the shared libgcc instead of the static version. The most common of these is when the application wishes to throw and catch exceptions across different shared libraries. In that case, each of the libraries as well as the application itself should use the shared libgcc.
Therefore, the G++ and GCJ drivers automatically add -shared-libgcc whenever you build a shared library or a main executable, because C++ and Java programs typically use exceptions, so this is the right thing to do.
If, instead, you use the GCC driver to create shared libraries, you may find that they are not always linked with the shared libgcc. If GCC finds, at its configuration time, that you have a non-GNU linker or a GNU linker that does not support option --eh-frame-hdr, it links the shared version of libgcc into shared libraries by default. Otherwise, it takes advantage of the linker and optimizes away the linking with the shared version of libgcc, linking with the static version of libgcc by default. This allows exceptions to propagate through such shared libraries, without incurring relocation costs at library load time.
However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ or GCJ driver, as appropriate
for the languages used in the program, or using the option
-shared-libgcc, such that it is linked with the shared
libgcc.
-static-libasan
-static-libtsan
-static-libstdc++
-symbolic
-T
script-Xlinker
optionIf you want to pass an option that takes a separate argument, you must use -Xlinker twice, once for the option and once for the argument. For example, to pass -assert definitions, you must write -Xlinker -assert -Xlinker definitions. It does not work to write -Xlinker "-assert definitions", because this passes the entire string as a single argument, which is not what the linker expects.
When using the GNU linker, it is usually more convenient to pass
arguments to linker options using the option=value
syntax than as separate arguments. For example, you can specify
-Xlinker -Map=output.map rather than
-Xlinker -Map -Xlinker output.map. Other linkers may not support
this syntax for command-line options.
-Wl,
option-u
symbol[1] On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous.